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The World of Data

 Technology producing complex (interdisciplinary) data at exponential 
rates— data deluge 

 Data are a resource BUT size and complexity are still overwhelming 
scientists’ current practices to extract useful information

 Exploiting this resource requires better tools, practices and new 
solutions

 Need to combine scientific expertise, computational knowledge and 
statistical skills to solve critical problems and make new discoveries

 Requires new initiatives, institutional commitment, people-power and 
technology



Data-Centric Science – It’s All About the Data

“Hypotheses are not only tested through directed data 
collection and analysis but also generated by combining and 
mining the pool of data already available “

Goble and Roure (2009) from The Fourth Paradigm: Data-Intensive Scientific 
Discovery Edited by Hey, Tansley and Tolle).

But In order to do this – data have to be discoverable and re-
useable



Summary - Questions

 Overview of work
 How did you start working with methodology side?
 Collaborative work with methodology side – shared 

benefits
 New research themes from your collaborative work 

and write technical papers?
 How do you educate/train pi-shaped scientists?



Data as a Resource –
The Rothamsted Park Grass Experiment

 Oldest continuing experiment on permanent 
grassland in the world – started 1856

 Investigate ways of improving hay yield by
using inorganic fertilisers and organic manure

Measured species diversity and soil function 
also interactions with meteorological conditions

 Park Grass results are increasingly important to ecologists, 
environmentalists and soil scientists

 Being used in ways never imagined by the original scientists
 Possible as DATA and SAMPLES were kept, WE KNOW WHERE 

THEY ARE and samples can be re-analysed to provide missing 
data

Picture from Rothamsted e-RA



A Brief History Of Genome Sequencing
1977 first complete genome phage Ф-X174 (5,375bp)

1980 ~56 DNA gene sequences in public domain, ~180 by 1983

1995 first complete bacterial genome  Haemophilus influenzae

1996 first complete eukaryotic genome  Saccharomyces cerevisiae

1998 first multicellular eukaryote genome
Caenorhabditis elegans - (97Mb) 

2001 Draft human genome published 

over 11 million records in EMBL

2015 1939 completed eukaryotes, 31611 

prokaryotes
6



Bio-data Characteristics – The Basics
 Lack of structure, rapid growth but not (very) huge volume, 

high heterogeneity
 Multiple file formats, widely differing sizes, acquisition rates 
 Considerable manual data collection
 Multiple format changes over data lifetime including 

production of (evolving) exchange formats
 Huge range of  analysis methods, algorithms and 

software in use with wide ranging computational profiles 
 Association with multiple metadata standards and 

ontologies, some of which are still evolving
 Increasing reference or link to patient data with associated 

security requirements 



Data Diversity And  Volume

Genomes Bio-Imaging
Transcriptome

Proteome

Metabolomics
Protein 

interactions Large-scale field studies

Improved understanding
of  complex biological system

Variant 
analyses

Challenges in primary analyses (smaller) 
AND in meaningful integration (huge)

Clinical data,
Sample-related data

?
Other -omes

http://images.google.co.uk/imgres?imgurl=http://www.abdn.ac.uk/ims/imaging/images/confocal/osteoblast3.jpg&imgrefurl=http://www.abdn.ac.uk/ims/imaging/confocal_images2.shtml&h=512&w=512&sz=22&hl=en&start=25&tbnid=ATdFGEcgOCk4JM:&tbnh=131&tbnw=131&prev=/images?q=confocal+imaging&start=20&ndsp=20&svnum=100&hl=en&rls=GGLG,GGLG:2005-37,GGLG:en&sa=N
http://images.google.co.uk/imgres?imgurl=http://www.abdn.ac.uk/ims/imaging/images/confocal/osteoblast3.jpg&imgrefurl=http://www.abdn.ac.uk/ims/imaging/confocal_images2.shtml&h=512&w=512&sz=22&hl=en&start=25&tbnid=ATdFGEcgOCk4JM:&tbnh=131&tbnw=131&prev=/images?q=confocal+imaging&start=20&ndsp=20&svnum=100&hl=en&rls=GGLG,GGLG:2005-37,GGLG:en&sa=N
http://cmgm.stanford.edu/biochem/gfx/images/brown_arrayimage.jpg
http://cmgm.stanford.edu/biochem/gfx/images/brown_arrayimage.jpg


Adding Complexity – Formats, Standards, Repositories

 One raw data type BUT many file formats -may be human 
readable, require specific software,  proprietary or open source

 Over 1552 different public databases, most limited by data 
domain, origin or both (NAR online Molecular Biology Database Collection) 

 30+ minimum reporting guidelines for bio/ biomedical data but 
few cross experimental types

= fragmentation, confusion for non-domain specialists



The Systems Biology Lesson – Integration Takes Effort

Biological data
Biologists

Models
Numerical scientists

Building

?

Data integration
Models
Full cycle systems
biology

Bridging skills:
Understanding of
Programming
Data types
Some methodologies
Necessary software

interpreter

Interdisciplinary 
training



The Bioinformatics Support Service – What We Do

We support all stages in the data lifecycle - experimental design, 
data and metadata capture, primary and later stage analyses, 
data management, visualisation, sharing and publication

Large-scale genomics & Next Generation Sequencing Analyses 
Tools for multiplatform data and metadata management
Bespoke clinical and biological databases, tissue-banking 
Software and script development, data visualisation, mobile apps
Full grant-based collaboration across disciplines
Brokering, skills sharing, advocacy
New ways of  high throughput working – e.g. cloud, workflows   
Teaching, Workshops and One-to-One tutorials

Variety of skill-sets cover wet-lab bio,  statistics, computer science



The Publication Complication 

 Public bio-database formats lead to data fragmentation
May cross-reference datasets across databases (good)
 Each has its own format and metadata requirements
 Quality assurance can be variable
 Data submission may be a requirement for journal 

publication (good)
 Large datasets can take weeks to prepare/validate and 

generate 100’s of thousands of lines of XML, TB of data
 Automation complicated by regular changes to uploaders
Where to put the other associated data – that may not be 

linked to a publication?



Example - Bridging the Gaps In One Domain  
– Bio-imaging

Confocal  image
analysis -
feature detection

• Sample tracking for image analysis 
specialists

• Bespoke automated analysis systems 
for biologists

• Maintaining OMERO OME database 
for Photonics researchers

• MRI scan management solution for 
research groups 



Example - Encouraging Electronic Data Capture
- Mobile applications For Data Input 

customisable geo-tagged 
data capture in the field
automated remote 
database storage

LabBook http://labbook.cc
Secure backup, sharing, search, version 
control via website
Handwritten notes, annotation
Supports photos, videos, file attachments, 
voice memos, barcode scanning

http://labbook.cc/


Practical Improvements  For 
Increasingly Large Scale Data

GenomeThreader 
in the MapReduce 
framework

What can we learn from
Collaborators:

High Energy Physics
Astronomy
Photonics
Chemistry
Mathematics
Computer Science



NGS
sequencing

Overlap >= 70%
E-value < 1

< 60% gaps

Species tree

Gene tree

Eugene:
integration

and 
gene prediction

CDS
Protein

predictions

The iTAG Annotation Pipeline

S. Rombauts, iTAG
2012



Grass Roots Challenges  

 Integrative approaches repeatedly show that complete 
metadata are vital for optimal data reuse BUT

Metadata capture still a complex time-consuming task 
 Data fragmentation across multiple sites still a major barrier 

to uptake (can’t find it… can’t use it…)
 Practical aspects – cost of storage & curation, sheer volume 

of datasets
 Difficulty of  obtaining consistent funding for fundamentals

- maintaining core infrastructure, software, databases  
 Staff – shortage of truly inter-disciplinary  infrastructure & 

knowledge providers, career progression 



The Blumeria Story
Spanu et al

 Cereal powdery mildews 
 Obligate biotrophs of Wheat, Barley
 Fungal Haustoria fill the living plant cells and siphon off food 
 Also may deliver the Effectors that turn off the Plant ‘immune’ 

response 

Maike Both
Pietro Spanu

A Collaboration Story



Changes in technology:
Genome sequencing
became cost-effective

The genome produced
surprises

Wide team of Collaborators 
coalesced - still working
together

Spanu et al  DOI:10.1126/science.11 94573 

Needed input from many 
other organisms, other datasets, 
other methodologies to get the 
bigger picture

How a wet-lab went multi –omic by collaboration



Complex Heterogeneous Data

 Blumeria Genome - 5 different sequencing technologies
required complex hybrid assemblies

 Annotation - automated pipeline AND extensive collaborative 
manual annotation across multiple countries

 Comparative analyses using data from 3 other species’ 
genomes

 Integration across multiple data types:
 RNA-seq data
 Mass spec proteomics data
 NMR data
 Protein structural prediction AND AND AND……

 AND - originating lab had no informatics expertise



Surprise no 2: practically all 
primary metabolic pathways 
are conserved

Gene/Mb

0 100 200 300 400 500 600 700

Gene d

(Spanu et al, 2010 
Wicker et al, 2013)

no 4: surprising 
low gene density

Surprise no 3:
Powdery mildews have big 
genomes with few genes

Number of 
genes

in average 
fungal genome

(~12,000)

Number of 
genes
Cereal 

Powdery 
Mildew 

Genomes
(~6500)

Surprise no 1: Powdery mildew genome ~4 x larger than expected 



Surprise no 5: a huge 
superfamily of effector-
like genes (CSEPs)
>7% of total genes 

Pedersen et al. (2012)
doi:10.1186/1471-2164-13-694

RNA-Seq shows:
• vast majority of these are expressed 

at high levels 
• the majority is more highly 

expressed in the haustoria

Proteomics shows:
• These proteins are some

of the dominant proteins
in haustoria

http://www.biomedcentral.com/1471-2164/13/694/abstract


The End of the Beginning – Enabling New Investigations

A whole new theme of investigation - effectors:
 Host-Induced Gene Silencing to look at effects on pathogenicity
 Expression profiling during infection
 Transient expression in plants to study effect on susceptibility to 

some pathogens
 Structure prediction for RNAse-like (“RALPH”) candidate effectors

(PHYRE and INFOLD)
 Solved structure for some candidates
 RNA binding demonstration - Nucleic Acids 

induce NMR shift
 Ongoing studies on binding function

Ribonuclease T1 (1RNT) CSEP0090

CSEP0093 CSEP0347

Superposition

Pedersen et al (2012)



Clinical 
data

135 variables
(n = 753)

Transcriptomic 
data (liver biopsy)

(n = 88, 17800 
genes)

Metabolomic data
Urine (NMR)

(n = 413, 30000 data 
points)

Serum (NMR)
(n = 421, 30000 data 

points)
Serum lipidomics (MS, 
+ve and –ve mode)

(n = 426, ≤5500 data 
points)

Proteomic 
data

(serum)
(n = 88)

Phylogenomic data
(16S rRNA gene, 
faeces) (n = 110)

Metagenomic 
data (faeces)

(n = 73)

The role of intestinal microbiota
in non-alcoholic fatty liver 
disease (NAFLD)

L. Hoyles Not originally planned



Metagenome Pipeline                                      ( Karlsson et al,. 2012  )Quality Trim
(FastX)

Human Filter
(bowtie vs Human 

b37)

Taxonomical 
Analysis

(bowtie vs ref. genomes)

de-novo Assembly
(Velvet)

Determine 
Abundance

(bowtie vs gene catalog)

Gene Prediction
(Metagenemark)

Non-redundant 
gene catalog

(cd-hit)

Functional 
Annotation

(Usearch vs KEGG)

Abundance-based 
clustering

(MCL)

 New Data Types
 Methodologies change
 Need to continually re-evaluate
 Hard to do this unless you are in the field
 Practical computational constraints



Metagenome Pipeline                                                            ICL   2015 Quality Analysis
(FastQC)

Filter
(bwa)

Taxonomical 
Analysis

(MetaPhlAn)

de-novo Assembly
(IDBA-UD)

Determine 
Abundance

(bowtie vs gene catalog)

Gene Prediction
(Metagenemark)

Non-redundant 
gene catalog

(cd-hit)

Presence in IGC 
Catalogue

(Usearch vs KEGG)

Abundance-based 
clustering

(MCL)

viral
parasites

plants

Human

Functional 
Annotation

(Usearch vs KEGG)

J. Abbott

Functional 
Annotation
(Interproscan)

 Every step re-evaluated
 Functional annotation extended
 Now expecting continual dataset input
 Faster turnaround requires larger compute



Better  Instrumentation, 
Higher Throughput, More Integration 

Advancement & application of 
metabolic profiling methods & 

technologies

• Undertake and develop state-of-
the-art (mass spectrometric and 
NMR spectroscopic) analyses for 
metabolic finger-printing of 
biofluids

• Combine metabolic analyses with 
other clinical, lifestyle and –omics
datasets 

• A national resource and research 
capacity, enabling researchers to 
derive clinically-relevant insights to 
identify bio-markers or profiles

• Develop new methods and 
technologies
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Aggregation, Integration, Visualisation and 
Analysis of Large, Complex Data 

 Example of newly funded multi-disciplinary initiatives
 1 of 6 national projects to improve infrastructure for medical 

informatics
Multiple partner Institutions, multiple areas:

 Imperial (population studies, GWAS, Metabolomics, data 
integration)

 Institute of Cancer Research (cancer informatics)
 European Bioinformatics Institute (Metabolights database)
 Centre for the Improvement of Population Health through E-

health Research (e-health records)
 MRC Clinical Sciences Centre (data integration, statistics)
 MRC Human Nutrition Research (phospho-proteomics) 

Multiple Industrial partners

UK MED-BIO: 



MED-BIO  – Complex Large Data
Largest  primary data volume producer is  
metabolomics
Also: 
• NGS (exomes, genomes, targetted)
• Proteomics (mass spec)
• Transcriptomics and methylation-based
• Gut metagenomics and meta-

transcriptomics
• Genome wide association studies
Need to support primary data analyses 
AND Integration and intelligent data-mining 
of large, heterogeneous, high dimensional 
datasets (from all of above)
Also secure integration with patient data



The Expososome



More Practical Challenges

 1-off Capital funding to buy the big compute, big storage needed 
 BUT future needs are emergent – need flexibility and scaleability

 Little funding provision for staff to build and maintain (and 
help/support) the complex software/data infrastructures 
 Requires additional resources  - or a bottleneck develops

 Funded mid-career Fellowships encourage innovation BUT 
 They also need integrative support

 Data  and metadata management will be vital 
 BUT not ‘trendy’ or easily fundable and require domain-specific 

knowledge – automate as much as possible



Scaling 

 Support primary data analyses as well as later integration 
and mining

 Heterogeneous job profiles: standard cluster compute (3280 
additional cores), cache-coherent memory (640 cores, 8 TB 
RAM), large memory nodes (40 cores, 1-2TB RAM each)

 Centralised active tiered storage – 800TB GPFS, 2 PB object 
store, 2 PB tape – duplicated across 2 sites

 Video wall, touch overlay, 3D projection capability for  
visualisation

 Centrally-managed software, scheduling, metadata capture
 BUSINESS MODEL for growth, sustainability



Training and Skills – The π Scientist

A Recent survey of vulnerable skills and capabilities for UK 
Research Councils  (BBSRC, MRC) identified:  
 Lack of inter-disciplinary skills at postgraduate and postdoc. 

level, and need for depth as well as breadth of knowledge
 Data analytics especially bioinformatics vulnerable – but also 

general large scale data analysis skills – interpretation, storage, 
programming

 Maths, statistics and computational biology lacking at the 
postgrad and postdoc level – so recruiting difficult, not just in 
UK

 Quality and provision of operational and support roles an issue
 Bioinformatics now on Home Office’s Shortage Occupation list



Over 30 Bioinformatics and Systems Biology Modelling 
Groups Across The College



Formal Training - MSc Bioinformatics and Theoretical 
Systems Biology

 Aim - Train both numerical and biological undergraduates 
in bioinformatics and theoretical systems biology so they 
can progress to research posts in world leading academic, 
governmental and commercial centres

 Annual intake c. 15 students- always both numerical 
and  biological

 Over 75% progress to PhDs in best institutions (Imperial, 
UCL, Cambridge, Oxford, ETH, EMBL)

 In last BBSRC funding round, this MSc was ranked top 
from all biological science proposals

http://www.imperial.ac.uk/study/pg/courses/life-sciences/bioinformatics/



MSc in Bioinformatics and Theoretical Systems Biology 
- a 12 month course

 1st three months formal training
 Fundamentals of biology
 Statistics and mathematical modelling
 Bioinformatics and theoretical systems biology
 Computer programming (Python, Java, MySQL)

 Project 1 – group database
 Project 2 – data analysis and web design
 Project 3 – research topic (sometimes published)
 Over 30 groups provide research topics from many Imperial 

departments including clinical groups



PhD Training  Next Generation Computational Biologists

 Across departments, faculties and campuses
 With about 30 theoretical groups over 100 PhD students 

currently being trained
 Research  supported by £25M grants
 Some purely theoretical, others mixed wet / dry
 Industrial partnership studentships – e.g. CASE 
 BUT training, mentoring required for all stages – and not 

so easy to support or fund
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