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The World of Data

 Technology producing complex (interdisciplinary) data at exponential 
rates— data deluge 

 Data are a resource BUT size and complexity are still overwhelming 
scientists’ current practices to extract useful information

 Exploiting this resource requires better tools, practices and new 
solutions

 Need to combine scientific expertise, computational knowledge and 
statistical skills to solve critical problems and make new discoveries

 Requires new initiatives, institutional commitment, people-power and 
technology



Data-Centric Science – It’s All About the Data

“Hypotheses are not only tested through directed data 
collection and analysis but also generated by combining and 
mining the pool of data already available “

Goble and Roure (2009) from The Fourth Paradigm: Data-Intensive Scientific 
Discovery Edited by Hey, Tansley and Tolle).

But In order to do this – data have to be discoverable and re-
useable



Summary - Questions

 Overview of work
 How did you start working with methodology side?
 Collaborative work with methodology side – shared 

benefits
 New research themes from your collaborative work 

and write technical papers?
 How do you educate/train pi-shaped scientists?



Data as a Resource –
The Rothamsted Park Grass Experiment

 Oldest continuing experiment on permanent 
grassland in the world – started 1856

 Investigate ways of improving hay yield by
using inorganic fertilisers and organic manure

Measured species diversity and soil function 
also interactions with meteorological conditions

 Park Grass results are increasingly important to ecologists, 
environmentalists and soil scientists

 Being used in ways never imagined by the original scientists
 Possible as DATA and SAMPLES were kept, WE KNOW WHERE 

THEY ARE and samples can be re-analysed to provide missing 
data

Picture from Rothamsted e-RA



A Brief History Of Genome Sequencing
1977 first complete genome phage Ф-X174 (5,375bp)

1980 ~56 DNA gene sequences in public domain, ~180 by 1983

1995 first complete bacterial genome  Haemophilus influenzae

1996 first complete eukaryotic genome  Saccharomyces cerevisiae

1998 first multicellular eukaryote genome
Caenorhabditis elegans - (97Mb) 

2001 Draft human genome published 

over 11 million records in EMBL

2015 1939 completed eukaryotes, 31611 

prokaryotes
6



Bio-data Characteristics – The Basics
 Lack of structure, rapid growth but not (very) huge volume, 

high heterogeneity
 Multiple file formats, widely differing sizes, acquisition rates 
 Considerable manual data collection
 Multiple format changes over data lifetime including 

production of (evolving) exchange formats
 Huge range of  analysis methods, algorithms and 

software in use with wide ranging computational profiles 
 Association with multiple metadata standards and 

ontologies, some of which are still evolving
 Increasing reference or link to patient data with associated 

security requirements 



Data Diversity And  Volume

Genomes Bio-Imaging
Transcriptome

Proteome

Metabolomics
Protein 

interactions Large-scale field studies

Improved understanding
of  complex biological system

Variant 
analyses

Challenges in primary analyses (smaller) 
AND in meaningful integration (huge)

Clinical data,
Sample-related data

?
Other -omes

http://images.google.co.uk/imgres?imgurl=http://www.abdn.ac.uk/ims/imaging/images/confocal/osteoblast3.jpg&imgrefurl=http://www.abdn.ac.uk/ims/imaging/confocal_images2.shtml&h=512&w=512&sz=22&hl=en&start=25&tbnid=ATdFGEcgOCk4JM:&tbnh=131&tbnw=131&prev=/images?q=confocal+imaging&start=20&ndsp=20&svnum=100&hl=en&rls=GGLG,GGLG:2005-37,GGLG:en&sa=N
http://images.google.co.uk/imgres?imgurl=http://www.abdn.ac.uk/ims/imaging/images/confocal/osteoblast3.jpg&imgrefurl=http://www.abdn.ac.uk/ims/imaging/confocal_images2.shtml&h=512&w=512&sz=22&hl=en&start=25&tbnid=ATdFGEcgOCk4JM:&tbnh=131&tbnw=131&prev=/images?q=confocal+imaging&start=20&ndsp=20&svnum=100&hl=en&rls=GGLG,GGLG:2005-37,GGLG:en&sa=N
http://cmgm.stanford.edu/biochem/gfx/images/brown_arrayimage.jpg
http://cmgm.stanford.edu/biochem/gfx/images/brown_arrayimage.jpg


Adding Complexity – Formats, Standards, Repositories

 One raw data type BUT many file formats -may be human 
readable, require specific software,  proprietary or open source

 Over 1552 different public databases, most limited by data 
domain, origin or both (NAR online Molecular Biology Database Collection) 

 30+ minimum reporting guidelines for bio/ biomedical data but 
few cross experimental types

= fragmentation, confusion for non-domain specialists



The Systems Biology Lesson – Integration Takes Effort

Biological data
Biologists

Models
Numerical scientists

Building

?

Data integration
Models
Full cycle systems
biology

Bridging skills:
Understanding of
Programming
Data types
Some methodologies
Necessary software

interpreter

Interdisciplinary 
training



The Bioinformatics Support Service – What We Do

We support all stages in the data lifecycle - experimental design, 
data and metadata capture, primary and later stage analyses, 
data management, visualisation, sharing and publication

Large-scale genomics & Next Generation Sequencing Analyses 
Tools for multiplatform data and metadata management
Bespoke clinical and biological databases, tissue-banking 
Software and script development, data visualisation, mobile apps
Full grant-based collaboration across disciplines
Brokering, skills sharing, advocacy
New ways of  high throughput working – e.g. cloud, workflows   
Teaching, Workshops and One-to-One tutorials

Variety of skill-sets cover wet-lab bio,  statistics, computer science



The Publication Complication 

 Public bio-database formats lead to data fragmentation
May cross-reference datasets across databases (good)
 Each has its own format and metadata requirements
 Quality assurance can be variable
 Data submission may be a requirement for journal 

publication (good)
 Large datasets can take weeks to prepare/validate and 

generate 100’s of thousands of lines of XML, TB of data
 Automation complicated by regular changes to uploaders
Where to put the other associated data – that may not be 

linked to a publication?



Example - Bridging the Gaps In One Domain  
– Bio-imaging

Confocal  image
analysis -
feature detection

• Sample tracking for image analysis 
specialists

• Bespoke automated analysis systems 
for biologists

• Maintaining OMERO OME database 
for Photonics researchers

• MRI scan management solution for 
research groups 



Example - Encouraging Electronic Data Capture
- Mobile applications For Data Input 

customisable geo-tagged 
data capture in the field
automated remote 
database storage

LabBook http://labbook.cc
Secure backup, sharing, search, version 
control via website
Handwritten notes, annotation
Supports photos, videos, file attachments, 
voice memos, barcode scanning

http://labbook.cc/


Practical Improvements  For 
Increasingly Large Scale Data

GenomeThreader 
in the MapReduce 
framework

What can we learn from
Collaborators:

High Energy Physics
Astronomy
Photonics
Chemistry
Mathematics
Computer Science



NGS
sequencing

Overlap >= 70%
E-value < 1

< 60% gaps

Species tree

Gene tree

Eugene:
integration

and 
gene prediction

CDS
Protein

predictions

The iTAG Annotation Pipeline

S. Rombauts, iTAG
2012



Grass Roots Challenges  

 Integrative approaches repeatedly show that complete 
metadata are vital for optimal data reuse BUT

Metadata capture still a complex time-consuming task 
 Data fragmentation across multiple sites still a major barrier 

to uptake (can’t find it… can’t use it…)
 Practical aspects – cost of storage & curation, sheer volume 

of datasets
 Difficulty of  obtaining consistent funding for fundamentals

- maintaining core infrastructure, software, databases  
 Staff – shortage of truly inter-disciplinary  infrastructure & 

knowledge providers, career progression 



The Blumeria Story
Spanu et al

 Cereal powdery mildews 
 Obligate biotrophs of Wheat, Barley
 Fungal Haustoria fill the living plant cells and siphon off food 
 Also may deliver the Effectors that turn off the Plant ‘immune’ 

response 

Maike Both
Pietro Spanu

A Collaboration Story



Changes in technology:
Genome sequencing
became cost-effective

The genome produced
surprises

Wide team of Collaborators 
coalesced - still working
together

Spanu et al  DOI:10.1126/science.11 94573 

Needed input from many 
other organisms, other datasets, 
other methodologies to get the 
bigger picture

How a wet-lab went multi –omic by collaboration



Complex Heterogeneous Data

 Blumeria Genome - 5 different sequencing technologies
required complex hybrid assemblies

 Annotation - automated pipeline AND extensive collaborative 
manual annotation across multiple countries

 Comparative analyses using data from 3 other species’ 
genomes

 Integration across multiple data types:
 RNA-seq data
 Mass spec proteomics data
 NMR data
 Protein structural prediction AND AND AND……

 AND - originating lab had no informatics expertise



Surprise no 2: practically all 
primary metabolic pathways 
are conserved

Gene/Mb

0 100 200 300 400 500 600 700

Gene d

(Spanu et al, 2010 
Wicker et al, 2013)

no 4: surprising 
low gene density

Surprise no 3:
Powdery mildews have big 
genomes with few genes

Number of 
genes

in average 
fungal genome

(~12,000)

Number of 
genes
Cereal 

Powdery 
Mildew 

Genomes
(~6500)

Surprise no 1: Powdery mildew genome ~4 x larger than expected 



Surprise no 5: a huge 
superfamily of effector-
like genes (CSEPs)
>7% of total genes 

Pedersen et al. (2012)
doi:10.1186/1471-2164-13-694

RNA-Seq shows:
• vast majority of these are expressed 

at high levels 
• the majority is more highly 

expressed in the haustoria

Proteomics shows:
• These proteins are some

of the dominant proteins
in haustoria

http://www.biomedcentral.com/1471-2164/13/694/abstract


The End of the Beginning – Enabling New Investigations

A whole new theme of investigation - effectors:
 Host-Induced Gene Silencing to look at effects on pathogenicity
 Expression profiling during infection
 Transient expression in plants to study effect on susceptibility to 

some pathogens
 Structure prediction for RNAse-like (“RALPH”) candidate effectors

(PHYRE and INFOLD)
 Solved structure for some candidates
 RNA binding demonstration - Nucleic Acids 

induce NMR shift
 Ongoing studies on binding function

Ribonuclease T1 (1RNT) CSEP0090

CSEP0093 CSEP0347

Superposition

Pedersen et al (2012)



Clinical 
data

135 variables
(n = 753)

Transcriptomic 
data (liver biopsy)

(n = 88, 17800 
genes)

Metabolomic data
Urine (NMR)

(n = 413, 30000 data 
points)

Serum (NMR)
(n = 421, 30000 data 

points)
Serum lipidomics (MS, 
+ve and –ve mode)

(n = 426, ≤5500 data 
points)

Proteomic 
data

(serum)
(n = 88)

Phylogenomic data
(16S rRNA gene, 
faeces) (n = 110)

Metagenomic 
data (faeces)

(n = 73)

The role of intestinal microbiota
in non-alcoholic fatty liver 
disease (NAFLD)

L. Hoyles Not originally planned



Metagenome Pipeline                                      ( Karlsson et al,. 2012  )Quality Trim
(FastX)

Human Filter
(bowtie vs Human 

b37)

Taxonomical 
Analysis

(bowtie vs ref. genomes)

de-novo Assembly
(Velvet)

Determine 
Abundance

(bowtie vs gene catalog)

Gene Prediction
(Metagenemark)

Non-redundant 
gene catalog

(cd-hit)

Functional 
Annotation

(Usearch vs KEGG)

Abundance-based 
clustering

(MCL)

 New Data Types
 Methodologies change
 Need to continually re-evaluate
 Hard to do this unless you are in the field
 Practical computational constraints



Metagenome Pipeline                                                            ICL   2015 Quality Analysis
(FastQC)

Filter
(bwa)

Taxonomical 
Analysis

(MetaPhlAn)

de-novo Assembly
(IDBA-UD)

Determine 
Abundance

(bowtie vs gene catalog)

Gene Prediction
(Metagenemark)

Non-redundant 
gene catalog

(cd-hit)

Presence in IGC 
Catalogue

(Usearch vs KEGG)

Abundance-based 
clustering

(MCL)

viral
parasites

plants

Human

Functional 
Annotation

(Usearch vs KEGG)

J. Abbott

Functional 
Annotation
(Interproscan)

 Every step re-evaluated
 Functional annotation extended
 Now expecting continual dataset input
 Faster turnaround requires larger compute



Better  Instrumentation, 
Higher Throughput, More Integration 

Advancement & application of 
metabolic profiling methods & 

technologies

• Undertake and develop state-of-
the-art (mass spectrometric and 
NMR spectroscopic) analyses for 
metabolic finger-printing of 
biofluids

• Combine metabolic analyses with 
other clinical, lifestyle and –omics
datasets 

• A national resource and research 
capacity, enabling researchers to 
derive clinically-relevant insights to 
identify bio-markers or profiles

• Develop new methods and 
technologies
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Aggregation, Integration, Visualisation and 
Analysis of Large, Complex Data 

 Example of newly funded multi-disciplinary initiatives
 1 of 6 national projects to improve infrastructure for medical 

informatics
Multiple partner Institutions, multiple areas:

 Imperial (population studies, GWAS, Metabolomics, data 
integration)

 Institute of Cancer Research (cancer informatics)
 European Bioinformatics Institute (Metabolights database)
 Centre for the Improvement of Population Health through E-

health Research (e-health records)
 MRC Clinical Sciences Centre (data integration, statistics)
 MRC Human Nutrition Research (phospho-proteomics) 

Multiple Industrial partners

UK MED-BIO: 



MED-BIO  – Complex Large Data
Largest  primary data volume producer is  
metabolomics
Also: 
• NGS (exomes, genomes, targetted)
• Proteomics (mass spec)
• Transcriptomics and methylation-based
• Gut metagenomics and meta-

transcriptomics
• Genome wide association studies
Need to support primary data analyses 
AND Integration and intelligent data-mining 
of large, heterogeneous, high dimensional 
datasets (from all of above)
Also secure integration with patient data



The Expososome



More Practical Challenges

 1-off Capital funding to buy the big compute, big storage needed 
 BUT future needs are emergent – need flexibility and scaleability

 Little funding provision for staff to build and maintain (and 
help/support) the complex software/data infrastructures 
 Requires additional resources  - or a bottleneck develops

 Funded mid-career Fellowships encourage innovation BUT 
 They also need integrative support

 Data  and metadata management will be vital 
 BUT not ‘trendy’ or easily fundable and require domain-specific 

knowledge – automate as much as possible



Scaling 

 Support primary data analyses as well as later integration 
and mining

 Heterogeneous job profiles: standard cluster compute (3280 
additional cores), cache-coherent memory (640 cores, 8 TB 
RAM), large memory nodes (40 cores, 1-2TB RAM each)

 Centralised active tiered storage – 800TB GPFS, 2 PB object 
store, 2 PB tape – duplicated across 2 sites

 Video wall, touch overlay, 3D projection capability for  
visualisation

 Centrally-managed software, scheduling, metadata capture
 BUSINESS MODEL for growth, sustainability



Training and Skills – The π Scientist

A Recent survey of vulnerable skills and capabilities for UK 
Research Councils  (BBSRC, MRC) identified:  
 Lack of inter-disciplinary skills at postgraduate and postdoc. 

level, and need for depth as well as breadth of knowledge
 Data analytics especially bioinformatics vulnerable – but also 

general large scale data analysis skills – interpretation, storage, 
programming

 Maths, statistics and computational biology lacking at the 
postgrad and postdoc level – so recruiting difficult, not just in 
UK

 Quality and provision of operational and support roles an issue
 Bioinformatics now on Home Office’s Shortage Occupation list



Over 30 Bioinformatics and Systems Biology Modelling 
Groups Across The College



Formal Training - MSc Bioinformatics and Theoretical 
Systems Biology

 Aim - Train both numerical and biological undergraduates 
in bioinformatics and theoretical systems biology so they 
can progress to research posts in world leading academic, 
governmental and commercial centres

 Annual intake c. 15 students- always both numerical 
and  biological

 Over 75% progress to PhDs in best institutions (Imperial, 
UCL, Cambridge, Oxford, ETH, EMBL)

 In last BBSRC funding round, this MSc was ranked top 
from all biological science proposals

http://www.imperial.ac.uk/study/pg/courses/life-sciences/bioinformatics/



MSc in Bioinformatics and Theoretical Systems Biology 
- a 12 month course

 1st three months formal training
 Fundamentals of biology
 Statistics and mathematical modelling
 Bioinformatics and theoretical systems biology
 Computer programming (Python, Java, MySQL)

 Project 1 – group database
 Project 2 – data analysis and web design
 Project 3 – research topic (sometimes published)
 Over 30 groups provide research topics from many Imperial 

departments including clinical groups



PhD Training  Next Generation Computational Biologists

 Across departments, faculties and campuses
 With about 30 theoretical groups over 100 PhD students 

currently being trained
 Research  supported by £25M grants
 Some purely theoretical, others mixed wet / dry
 Industrial partnership studentships – e.g. CASE 
 BUT training, mentoring required for all stages – and not 

so easy to support or fund
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